The Shapley value for fuzzy games on vague sets

Fan-Yong Meng* (Corresponding Author)
School of Management, Qingdao Technological University, Qingdao, 266520 Shandong Province
P. R. China
mengfanyongtjie@163.com
Yan Wang
Business School
Central South University
Changsha, 410083, Hunan Province
P. R. China
kmust_wy@sina.com

Abstract

In this paper, a general expression of the Shapley value for fuzzy games on vague sets is proposed, where the player participation levels are vague sets. The existence and uniqueness of the given Shapley value are showed by establishing axiomatic system. When the fuzzy games on vague sets are convex, the given Shapley value is a vague population monotonic allocation function (VPMAF) and an element in the core. Furthermore, we study a special kind of this class of fuzzy games, which can be seen as an extension of fuzzy games with multilinear extension form. An application of the proposed model in joint production problem is provided.

Key-Words: - fuzzy game; vague set; Shapley value; core; multilinear extension

1 Introduction

Cooperative fuzzy games [1] describe the situations that some players do not fully participate in a coalition, but to a certain degree. In this situation, a coalition is called a fuzzy coalition, which is formed by some players with partial participation. A special kind of fuzzy games, which is called fuzzy games with multilinear extension form [9], was discussed. In [2], the author defined a class of fuzzy games with proportional values, and gave the expression of the Shapley function on this limited class of games. Later, reference [12] pointed the fuzzy games given in [2] are neither monotone nondecreasing nor continuous with regard to rates of players' participation, and defined a kind of fuzzy games with Choquet integral forms. The Shapley function defined on this class of games is given. Recently, reference [3] expanded the fuzzy games with proportional values to fuzzy games with weighted function. And the corresponding Shapley function is also given. The fuzzy games with multilinear extension form and Choquet integral form are both monotone nondecreasing and continuous with respect to rates of players' participation.

As a well-known solution concept in cooperative game theory, the Shapley value for fuzzy games [2, $3,6-8,12]$ has been studied by many researchers. Besides the Shapley value, the fuzzy core of fuzzy games [13, 14] and the lexicographical solution for fuzzy games [10] are also discussed. When every player's participation level is 1 , a fuzzy game reduces to be a traditional game. Namely, the traditional game is a special case of the fuzzy game [1]. Furthermore, the Shapley value for fuzzy games with fuzzy payoffs $[4,15]$ is also considered.

All above mentioned researches only consider the situation where the player participation is determined. There are many uncertain factors during the process of negotiation and coalition forming. In order to reduce risk and get more payoffs, when the players take part in cooperation, sometime they only know the determining participation levels and the participation levels that they do not participate. At this situation, fuzzy games can not be applied. But the vague sets [5] can well describe the participation levels of the players. Based on above analysis, we shall study fuzzy games on vague sets, where the player participation levels are vague sets.

This paper is organized as follows. In the next section, we recall some notations and basic definitions, which will be used in the following. In section 3, the expression of the Shapley value is given and an axiomatic definition is offered. Some properties are researched. In section 4, we pay a special attention to discuss a special kind of fuzzy games on vague sets and give and investigate the explicit forms of the Shapley value for this kind of fuzzy games.

2 Preliminaries

2.1 The concept of vague sets

Let X be an initial universe set, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. A vague set over X is characterized by a ruthmembership function t_{v} and a false-membership function $f_{v}, t_{v}: X \rightarrow[0,1], f_{v}: X \rightarrow[0,1]$ satisfying t_{v} $+f_{v} \leq 1$, where $t_{v}\left(x_{i}\right)$ is a lower bound on the grade of membership of x_{i} derived from the evidence for x_{i}, and $f_{v}\left(x_{i}\right)$ is a lower bound on the negation of x_{i} derived from the evidence against x_{i}. The grade of membership of x_{i} in the vague set is bounded to a subinterval $\left[t_{v}\left(x_{i}\right), 1-f_{v}\left(x_{i}\right)\right]$ of $[0,1]$. The vague value $\left[t_{v}\left(x_{i}\right), 1-f_{v}\left(x_{i}\right)\right]$ indicates that the exact grade of membership $\mu_{v}\left(x_{i}\right)$ of x_{i} may be unknown, but it is bounded by $t_{v}\left(x_{i}\right) \leq \mu_{v}\left(x_{i}\right) \leq 1-f_{v}\left(x_{i}\right)$, where $t_{v}+f_{v} \leq 1$.
When the universe X is discrete, a vague set A can be written as

$$
A=\sum_{1 \leq i \leq n}\left[t_{A}\left(x_{i}\right), 1-f_{A}\left(x_{i}\right)\right] / x_{i}, \quad x_{i} \in X .
$$

Let the vague sets $x=[t(x), 1-f(x)]$ and $y=[t(y)$, $1-f(y)]$, where $0 \leq t(x)+f(x) \leq 1$ and $0 \leq t(y)+f(y) \leq 1$, then
(1) $x \wedge y=[t(x) \wedge t(y), 1-(f(x) \vee f(y))]$;
(2) $x \vee y=[t(x) \vee t(y), 1-(f(x) \wedge f(y))]$;
(3) $x \leq y \Leftrightarrow t(x) \leq t(y), f(x) \geq f(y)$;
(4) $x=y \Leftrightarrow t(x)=t(y), f(x)=f(y)$.

2.2 Some basic concepts for fuzzy games on vague sets

Let $N=\{1,2, \ldots, n\}$ be the player set, and $P(N)$ be the set of all crisp subsets in N. The coalitions in $P(N)$ are denoted by S_{0}, T_{0}, \ldots. For $S_{0} \in P(N)$, the cardinality of S_{0} is denoted by the corresponding lower case s. A function $v_{0}: P(N) \rightarrow \mathbb{R}_{+}$, satisfying
$v_{0}(\varnothing)=0$, is called a crisp game. Let $G_{0}(N)$ denote the set of all crisp games in N.

A vague set S in N is denoted by

$$
S=\sum_{i \in \text { Supps }}\left[t_{S}(i), 1-f_{s}(i)\right] / i=\left[t_{s}, e^{\text {Supps }}-f_{s}\right],
$$

where SuppS $=\left\{i \in N \mid t_{s}(i)>0\right\}$ denotes the support of t_{s}, and $e^{\text {Supp }}-f_{s}=\left\{\left(1-f_{s}(i)\right)_{i \in \operatorname{SuppS}}\right\} .0 \leq t_{s}(i)+f_{s}(i)$ ≤ 1 for any $i \in \operatorname{SuppS}$. $t_{s}(i)$ indicates the true membership grade of the player i in vague set S, and $f_{s}(i)$ denotes the false membership grade of the player i in vague set S. $e^{\text {SuppS }}$ denotes a n-dimension vector, where $e^{\operatorname{supp}}(i)=1$ for any $i \in \operatorname{SuppS}$, otherwise, $e^{\text {Supp } S}(i)=0$. The set of all vague sets in N is denoted by $T F(N)$. Let $S \in T F(N)$, the cardinality of t_{S} is denoted by $|\operatorname{SuppS}|$ and $\left|\operatorname{Supp}\left(e^{\text {Supp }}-f_{s}\right)\right|$ indicates the cardinality of $\operatorname{Supp}\left(e^{\text {supp } S}-f_{s}\right)=$ $\left\{i \in \operatorname{Supp} U \mid 1-f_{s}(i) \geq 0\right\}$. For any $S, K \in T F(N)$, we use the notation $S \subseteq K$ if and only if $t_{S}(i)=t_{K}(i)$ and $f_{s}(i)=f_{k}(i)$ or $t_{s}(i)=f_{s}(i)=0$ for any $i \in N$. A function $v: T F(N) \rightarrow \mathbb{R}_{+}$, satisfying $v(\varnothing)=0$, is called a fuzzy game on vague sets. Let $G_{V}(N)$ denote the set of all fuzzy games on $\operatorname{TF}(N)$. For any $S \in T F(N), v\left(t_{s}\right)$ is said to be true value for S, and $v\left(e^{\text {supps }}-f_{s}\right)$ is said to be upper value for S.

Let $S, K \in T F(N)$, we have

$$
\left(t_{S} \vee t_{K}\right)(i)=t_{S}(i) \vee t_{K}(i)
$$

$$
\left(t_{s} \wedge t_{K}\right)(i)=t_{S}(i) \wedge t_{K}(i)
$$

$$
\left(f_{s} \vee f_{K}\right)(i)=f_{s}(i) \vee f_{K}(i)
$$

and

$$
\left(f_{s} \wedge f_{K}\right)(i)=f_{s}(i) \wedge f_{K}(i)
$$

for any $i \in N$.
Definition 1 Let $v \in G_{V}(N)$ and $U \in T F(N), v$ is said to be convex in vague set U if

$$
v\left(t_{S} \wedge t_{K}\right)+v\left(t_{S} \vee t_{K}\right) \geq v\left(t_{s}\right)+v\left(t_{K}\right)
$$

and

$$
\begin{aligned}
& v\left(e^{\text {suppSUSuppK }}-\left(f_{s} \vee f_{K}\right)\right)+v\left(e^{\text {Supp } \cap \text { SuppK } K}-\left(f_{S} \wedge f_{K}\right)\right) \\
& \geq v\left(e^{\text {supps }}-f_{s}\right)+v\left(e^{\text {SuppK }}-f_{K}\right)
\end{aligned}
$$

for any $S, K \subseteq U$.

Definition 2 Let $v \in G_{V}(N)$ and $U \in T F(N)$, the vector $x=\left\{\left\langle x_{1}^{t}, x_{1}^{f}\right\rangle,\left\langle x_{2}^{t}, x_{2}^{f}\right\rangle, \ldots,\left\langle x_{n}^{t}, x_{n}^{f}\right\rangle\right\}$ is said to be an imputation for v in U if
(1) $x_{i}^{t} \geq v\left(t_{U}(i)\right), x_{i}^{f} \geq v\left(1-f_{U}(i)\right) \quad \forall i \in \operatorname{Supp} U$;
(2) $\sum_{i \in \operatorname{Supp} U} x_{i}^{t}=v\left(t_{U}\right), \sum_{i \in \operatorname{Supp} U} x_{i}^{f}=v\left(e^{\operatorname{Supp} U}-f_{U}\right)$.

Definition 3 Let $v \in G_{V}(N)$ and $U \in T F(N)$, the core $C_{V}(U, v)$ for v in U is defined by

$$
\begin{aligned}
C_{V}(U, v)= & \left\{x=\left\{\left\langle x_{i}^{t}, x_{i}^{f}\right\rangle_{i \in \operatorname{Supp} U}\right\} \mid \sum_{i \in \operatorname{Sup} U} x_{i}^{t}=v\left(t_{U}\right),\right. \\
& \sum_{i \in \operatorname{Supp} U} x_{i}^{f}=v\left(e^{\operatorname{Supp} U}-f_{U}\right), \sum_{i \in \operatorname{Supp}} x_{i}^{t} \geq v\left(t_{S}\right), \\
& \left.\sum_{i \in \operatorname{Supp} S} x_{i}^{f} \geq v\left(e^{\operatorname{SuppS}}-f_{S}\right), \forall S \subseteq U\right\}
\end{aligned}
$$

Definition 4 Let $v \in G_{V}(N)$ and $U \in T F(N)$, the vague set $S \subseteq U$ is said to be a carrier for v in U, if we have

$$
v\left(t_{S} \wedge t_{K}\right)=v\left(t_{K}\right)
$$

and

$$
v\left(e^{\text {SuppS } \cap \text { Supp } K}-\left(f_{S} \wedge f_{K}\right)\right)=v\left(e^{\text {SuppK }}-f_{K}\right)
$$

for any $K \subseteq U$.

From Definition 4, we know the vague set $S \subseteq U$ is a carrier for v in U if and only if t_{s} and $e^{\text {SuppS }}-f_{s}$ is a carrier for v in t_{U} and $e^{\operatorname{Supp} U}-f_{U}$, respectively.
Similar to the definition of population monotonic allocation function (PMAF) [11], we give the definition of VPMAF as follows:

Definition 5 Let $v \in G_{V}(N)$ and $U \in T F(N)$, the vector $y=\left\{\left\langle y_{i}^{t}, y_{i}^{f}\right\rangle_{i \in S u p p U}\right\}$ is said to be a VPMAF for v in U, if y satisfies

1) $\sum_{i \in \operatorname{SuppS}} y_{i}^{t}=v\left(t_{S}\right), \sum_{i \in \operatorname{SuppS}} y_{i}^{f}=v\left(e^{\mathrm{SuppS}}-f_{S}\right)$

$$
\forall S \subseteq U
$$

$$
\text { 2) } \begin{gathered}
y_{i}^{t}\left(t_{K}\right) \leq y_{i}^{t}\left(t_{S}\right), y_{i}^{f}\left(e^{\mathrm{Supp} K}-f_{K}\right) \leq y_{i}^{f}\left(e^{\mathrm{Supp} S}-f_{S}\right) \\
\forall i \in \operatorname{Supp} K, \forall S, K \subseteq U \text { s.t. } K \subseteq S
\end{gathered}
$$

3 The Shapley value for fuzzy games on vague sets

Similar to the definition of the Shapley value for traditional games and fuzzy games, we give the definition of the Shapley value for fuzzy games on vague sets as follows:

Definition 6 Let $v \in G_{V}(N)$ and $U \in T F(N)$. A function $\phi: G_{V}(N) \rightarrow \mathbb{R}_{+}$is said to be the Shapley value for v in U, if it satisfies the following axioms: Axiom 1: If S is a carrier for v in U, then we have

$$
v\left(t_{S}\right)=\sum_{i \in \mathrm{SuppS}} \phi_{i}\left(t_{U}, v\right)
$$

and

$$
v\left(e^{\mathrm{SuppS}}-f_{S}\right)=\sum_{i \in \mathrm{SuppS}} \phi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)
$$

Axiom 2: For $i, j \in \operatorname{Supp} U$, if we have

$$
v\left(t_{K} \vee t_{U}(i)\right)=v\left(t_{K} \vee t_{U}(j)\right)
$$

and

$$
v\left(e^{\mathrm{Supp} K \cup i}-\left(f_{K} \vee f_{U}(i)\right)\right)=v\left(e^{\mathrm{Supp} K \cup j}-\left(f_{K} \vee f_{U}(j)\right)\right)
$$

for any $K \subseteq U$ with $i, j \notin \operatorname{Supp} K$, then we get

$$
\phi_{i}\left(t_{U}, v\right)=\phi_{j}\left(t_{U}, v\right)
$$

and

$$
\phi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)=\phi_{j}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)
$$

Axiom 3: Let $v, w \in G_{V}(N)$, we have

$$
\phi\left(t_{U}, v+w\right)=\phi\left(t_{U}, v\right)+\phi\left(t_{U}, w\right)
$$

and

$$
\begin{aligned}
& \phi\left(e^{\mathrm{Supp} U}-t_{U}, v+w\right) \\
& =\phi\left(e^{\mathrm{Supp} U}-t_{U}, v\right)+\phi\left(e^{\mathrm{Supp} U}-t_{U}, w\right)
\end{aligned}
$$

Theorem 1 Let $v \in G_{V}(N), U \in \operatorname{TF}(N)$ and the function $\left\langle\varphi\left(t_{U}, v\right), \varphi\left(e^{\text {Supp }}-f_{U}, v\right)\right\rangle: G_{V}(N) \rightarrow \mathbb{R}_{+}$ defined by

$$
\begin{equation*}
\varphi_{i}\left(t_{U}, v\right)=\sum_{t_{K} \subseteq t_{U}, i \notin S \text { Sup } K} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\varphi_{i}\left(e^{\text {Supp } U}-f_{U}, v\right)=\sum_{\substack{f_{K} \subset f_{U}, i \notin \operatorname{Supp}\left(e^{\text {Upp } K}-f_{K}\right)}} \beta_{e^{\text {Sup }}-f_{U}}^{e^{\text {Sup K }}-f_{K}} \\
\times\left(v\left(e^{\text {SuppK } \cup i}-\left(f_{K} \vee f_{U}(i)\right)\right)-v\left(e^{\text {SuppK }}-f_{K}\right)\right) \tag{2}
\end{gather*}
$$

for any $i \in \operatorname{Supp} U$, where
$\beta_{U}^{K}=|\operatorname{Supp} K|!(|\operatorname{Supp} U|-|\operatorname{Supp} K|-1)!/|\operatorname{Supp} U|!$
and

$$
\begin{aligned}
& \beta_{e^{\text {SuppU }}-f_{U}}^{\text {Supp }^{\text {Sun }}-f_{K}}=\left|\operatorname{Supp}\left(e^{\text {SuppK }}-f_{K}\right)\right|! \\
& \times \frac{\left(\left|\operatorname{Supp}\left(e^{\operatorname{Supp} U}-f_{U}\right)\right|-\left|\operatorname{Supp}\left(e^{\operatorname{Supp} K}-f_{K}\right)\right|-1\right)!}{\left|\operatorname{Supp}\left(e^{\operatorname{Supp} U}-f_{U}\right)\right|!} .
\end{aligned}
$$

$t_{K} \subseteq t_{U}$ if and only if $t_{K}(i)=t_{U}(i)$ or $t_{K}(i)=0$ for any $i \in \operatorname{Supp} U$, and $f_{K} \subseteq f_{U}$ if and only if $f_{K}(i)=f_{U}(i)$ or $f_{K}(i)=0$ for any $i \in \operatorname{Supp} U$.
Then $\left\langle\varphi\left(t_{U}, v\right), \varphi\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle$ is the unique Shapley value for v in U.

Remark $1 \varphi\left(t_{U}, v\right)$ is said to be the player true Shapley values and $\varphi\left(e^{\text {Supp } U}-f_{U}, v\right)$ is said to be the player upper Shapley values. When the given fuzzy games are convex, the interval number $\left(\varphi\left(t_{U}, v\right), \varphi\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right)$ is called the player possible payoffs with respect to the Shapley function.

Proof. Axiom 1: For any $i \in \operatorname{Supp} U \backslash \operatorname{Supp} S$, from Definition 4, we have

$$
\begin{aligned}
v\left(t_{K} \vee t_{U}(i)\right) & =v\left(t_{S} \wedge\left(t_{K} \vee t_{U}(i)\right)\right) \\
& =v\left(\left(t_{S} \wedge t_{K}\right) \vee\left(t_{S} \wedge t_{U}(i)\right)\right) \\
& =v\left(t_{S} \wedge t_{K}\right) \\
& =v\left(t_{K}\right)
\end{aligned}
$$

for any $K \subseteq U$ with $i \notin \operatorname{Supp} K$.
From (1), we get

$$
\begin{aligned}
v\left(t_{S}\right) & =v\left(t_{S} \wedge t_{U}\right) \\
& =v\left(t_{U}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in \operatorname{Supp} U} \varphi_{i}\left(t_{U}, v\right) \\
& =\sum_{i \in \operatorname{Supp} U} \sum_{t_{K} \subseteq t_{U}, i \notin S u p p K} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)\right) \\
& =\sum_{i \in \operatorname{Supp} S} \sum_{t_{K} \subseteq t_{U}, i \notin \operatorname{Supp} K} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)\right) \\
& =\sum_{i \in \operatorname{SuppS}} \varphi_{i}\left(t_{U}, v\right)
\end{aligned}
$$

Similarly, we have

$$
v\left(e^{\mathrm{SuppS}}-f_{S}\right)=\sum_{i \in \operatorname{SuppS}} \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right) .
$$

Axiom 2: From (1), we get

$$
\begin{aligned}
& \varphi_{i}\left(t_{U}, v\right) \\
& =\sum_{t_{K} \subseteq t_{U}, i \notin \mathrm{Supp} K} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)\right) \\
& =\sum_{\substack{t_{K} \subset t_{U}, i, \dot{G} \neq \dot{S u p} K}} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)\right)+ \\
& \sum_{\substack{t_{K} \subset t_{U}, i, j \in \leq \operatorname{Sop},}} \beta_{U}^{K \cup t_{U}(j)}\left(v\left(t_{K} \vee t_{U}(i) \vee t_{U}(j)\right)-v\left(t_{K} \vee t_{U}(j)\right)\right) \\
& =\sum_{\substack{t_{K} \subseteq t_{U}, i, j \notin \operatorname{Supp} K}} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(j)\right)-v\left(t_{K}\right)\right)+ \\
& \sum_{\substack{t_{K} \leq t_{U}, i, j \leqslant S u p p K}} \beta_{U}^{K \cup t_{U}(i)}\left(v\left(t_{K} \vee t_{U}(i) \vee t_{U}(j)\right)-v\left(t_{K} \vee t_{U}(i)\right)\right) \\
& =\sum_{t_{K} \subseteq t_{U}, j \notin S \mathrm{upp} K} \beta_{U}^{K}\left(v\left(t_{K} \vee t_{U}(j)\right)-v\left(t_{K}\right)\right) \\
& =\varphi_{j}\left(t_{U}, v\right) \text {; }
\end{aligned}
$$

Similarly, we obtain

$$
\varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)=\varphi_{j}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)
$$

From (1) and (2), we can easily get Axiom 3.
Uniqueness: For any $v \in G_{V}(N)$ and $U \in T F(N)$, since v restricted in U can be uniquely expressed by

$$
v=\left\{\begin{array}{c}
\sum_{t_{K} \subseteq t_{U}, t_{K} \neq \varnothing} \alpha_{t_{K}} u_{t_{K}} \\
\sum_{f_{K} \subseteq f_{U}, e^{\text {supp }}-f_{K} \neq \varnothing} \alpha_{e^{\text {sup K } K}-f_{K}} u_{e^{\text {supp } K}-f_{K}}
\end{array},\right.
$$

where

$$
\begin{gathered}
\alpha_{K}=\sum_{t_{S} \subseteq t_{K}}(-1)^{|\mathrm{Supp} K|-|\operatorname{SuppS}|} v\left(t_{S}\right), \\
\alpha_{e^{\text {supp } K}-f_{K}}=\sum_{f_{S} \subseteq f_{K}}(-1)^{\left|e^{\text {supp } K}-f_{K}\right|-\left|e^{\text {supp } S}-f_{s}\right|} v\left(e^{\text {SuppS }}-f_{S}\right), \\
u_{t_{K}}\left(t_{S}\right)= \begin{cases}1 & t_{K} \subseteq t_{S} \subseteq t_{U} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
u_{e^{\text {supk }}-f_{K}}\left(e^{\text {supps }}-f_{s}\right)=\left\{\begin{array}{lr}
1 & f_{K} \subseteq f_{S} \subseteq f_{U} \\
0 & \text { otherwise }
\end{array} .\right.
$$

From Axiom 3, we only need to show the uniqueness of φ on unanimity game $u_{t_{K}}$ and $u_{e^{\text {supp }}-f_{K}}$, where $t_{K} \neq \varnothing$.

Since t_{K} is a carrier for $u_{t_{K}}$, from Axiom 1 and Axiom 2, we get

$$
\varphi_{i}\left(t_{U}, u_{t_{K}}\right)=\left\{\begin{array}{cc}
\frac{1}{|\operatorname{Supp} K|} & i \in \operatorname{Supp} K \\
0 & \text { otherwise }
\end{array}\right.
$$

Similarly, we have

$$
\begin{aligned}
& \varphi_{i}\left(e^{\operatorname{Supp} U}-f_{U}, u_{e^{\text {Supp } K}-f_{K}}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{\left|\operatorname{Supp}\left(e^{\mathrm{Supp} K}-f_{K}\right)\right|} & i \in \operatorname{Supp}\left(e^{\operatorname{Supp} K}-f_{K}\right) \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The proof is finished.
Theorem 2 Let $v \in G_{V}(N)$ and $U \in \operatorname{TF}(N)$, if v is convex in U, then

$$
\left\{\left\langle\varphi_{i}\left(t_{U}, v\right), \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}
$$

is a VPMAF for v in U.
Proof. From (1) and (2), we can easily get

$$
\sum_{i \in S u p p S} \varphi_{i}\left(t_{S}, v\right)=v\left(t_{S}\right)
$$

and

$$
\sum_{i \in \text { Supp } S} \varphi_{i}\left(e^{\text {SuppS }}-f_{S}, v\right)=v\left(e^{\text {SuppS }}-f_{S}\right) .
$$

In the following, we shall show the second condition in Definition 5 holds.

From Definition 1, we have

$$
v\left(t_{S} \vee t_{U}(i)\right)-v\left(t_{S}\right) \geq v\left(t_{K} \vee t_{U}(i)\right)-v\left(t_{K}\right)
$$

and

$$
\begin{aligned}
& \left.v\left(e^{\mathrm{Supp} S \cup i}-\left(f_{S} \vee f_{U}(i)\right)\right)-v\left(e^{\mathrm{SuppS}}-f_{S}\right)\right) \\
\geq & v\left(e^{\mathrm{Supp} K \cup i}-\left(f_{K} \vee f_{U}(i)\right)\right)-v\left(e^{\mathrm{Supp} K}-f_{K}\right)
\end{aligned}
$$

for any $K \subseteq S \subseteq U$, where $i \notin$ Supp S.
When $|\operatorname{Supp} K|+1=|\operatorname{Supp} S|$. For any $W \subseteq S$, we have

$$
\beta_{K}^{W}=\sum_{H \subseteq S \backslash K} \beta_{S}^{W \vee H},
$$

where
$\beta_{K}^{W}=|\operatorname{Supp} W|!(|\operatorname{Supp} K|-|\operatorname{Supp} W|-1)!/|\operatorname{Supp} K|!$ and
$\beta_{S}^{W \vee H}=\frac{|\operatorname{Supp}(W \vee H)|!(|\operatorname{Supp} S|-|\operatorname{Supp}(W \vee H)|-1)!}{|\operatorname{Supp} S|!}$.
From (1), we get
$\varphi_{i}\left(t_{K}, v\right)$
$=\sum_{t_{W} \subseteq t_{K}, i \notin \operatorname{Supp} W} \beta_{K}^{W}\left(v\left(t_{W} \vee t_{U}(i)\right)-v\left(t_{W}\right)\right)$
$\leq \sum_{t_{W} \subseteq t_{K}, i \notin \mathrm{Supp} W} \beta_{K}^{W}\left(v\left(t_{W} \vee t_{H} \vee t_{U}(i)\right)-v\left(t_{W} \vee t_{H}\right)\right)$
$=\sum_{\substack{t_{W} \leq t_{K}, i \notin S \cup H P W}} \sum_{H \subseteq S \backslash K} \beta_{S}^{W \vee H}\left(v\left(t_{W} \vee t_{H} \vee t_{U}(i)\right)-v\left(t_{W} \vee t_{H}\right)\right)$
$=\sum_{t_{W} \subseteq t_{s}, i \notin \operatorname{Supp} W} \beta_{S}^{W}\left(v\left(t_{W} \vee t_{U}(i)\right)-v\left(t_{W}\right)\right)$
$=\varphi_{i}\left(t_{s}, v\right)$
for any $i \in \operatorname{Supp} K$.
By induction, we have $\varphi_{i}\left(t_{K}, v\right) \leq \varphi_{i}\left(t_{S}, v\right)$ for any $K \subseteq S \subseteq U$ and any $i \in \operatorname{Supp} K$.
Similarly, we have

$$
\varphi_{i}\left(e^{\mathrm{Supp} K}-f_{K}, v\right) \leq \varphi_{i}\left(e^{\mathrm{Supp} S}-f_{S}, v\right)
$$

for any $K \subseteq S \subseteq U$ and any $i \in \operatorname{Supp} K$.
Thus, we obtain $\left\{\left\langle\varphi_{i}\left(t_{U}, v\right), \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}$ is a VPMAF for v in U.

Theorem 3 Let $v \in G_{V}(N)$ and $U \in \operatorname{TF}(N)$. If v is convex in U, then

$$
\left\{\left\langle\varphi_{i}\left(t_{U}, v\right), \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle_{i \in \operatorname{Supp} U}\right\} \in C_{V}(U, v)
$$

Proof. From Theorem 1, we obtain

$$
\sum_{i \in \operatorname{Supp} U} \varphi_{i}\left(t_{U}, v\right)=v\left(t_{U}\right)
$$

and

$$
\sum_{i \in \operatorname{Supp} U} \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)=v\left(e^{\mathrm{Supp} U}-f_{U}\right) .
$$

From Theorem 2, we have

$$
v\left(t_{S}\right)=\sum_{i \in \text { SuppS }} \varphi_{i}\left(t_{S}, v\right) \leq \sum_{i \in \text { SuppS }} \varphi_{i}\left(t_{U}, v\right)
$$

and

$$
\begin{aligned}
v\left(e^{\mathrm{SuppS}}-f_{S}\right) & =\sum_{i \in \mathrm{SuppS}} \varphi_{i}\left(e^{\mathrm{SuppS}}-f_{S}, v\right) \\
& \leq \sum_{i \in \mathrm{SuppS}} \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)
\end{aligned}
$$

Namely,

$$
\left\{\left\langle\varphi_{i}\left(t_{U}, v\right), \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle_{i \in \operatorname{Supp} U}\right\} \in C_{V}(U, v)
$$

Corollary 1 Let $v \in G_{V}(N)$ and $U \in T F(N)$. Suppose v is convex in U, then

$$
\left\{\left\langle\varphi_{i}\left(t_{U}, v\right), \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}
$$

is an imputation for v in U.
Proposition 1 Let $v \in G_{V}(N)$ and $U \in T F(N)$. Suppose we have

$$
v\left(t_{S} \vee t_{U}(i)\right)-v\left(t_{S}\right)=v\left(t_{U}(i)\right)
$$

and

$$
v\left(e^{\text {Supp } S i}-\left(f_{s} \vee f_{U}(i)\right)\right)-v\left(e^{\text {SuppS }}-f_{s}\right)=v\left(1-f_{U}(i)\right)
$$

for any $S \subseteq U$ with $i \notin \operatorname{Supp} S$.
Then we have

$$
\varphi_{i}\left(t_{U}, v\right)=v\left(t_{U}(i)\right)
$$

and

$$
\varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right)=v\left(1-f_{U}(i)\right)
$$

Corollary 2 Let $v \in G_{V}(N)$ and $U \in T F(N)$. Suppose we have

$$
v\left(t_{S} \vee t_{U}(i)\right)=v\left(t_{S}\right)
$$

and

$$
v\left(e^{\mathrm{Supp} S \cup i}-\left(f_{S} \vee f_{U}(i)\right)\right)=v\left(e^{\mathrm{SuppS}}-f_{S}\right)
$$

for any $S \subseteq U$ with $i \notin \operatorname{Supp} S$.
Then we have $\varphi_{i}\left(t_{U}, v\right)=\varphi_{i}\left(e^{\text {Supp } U}-f_{U}, v\right)=0$.
Proposition 2 Let $v, w \in G_{V}(N)$ and $U \in T F(N)$. Suppose we have

$$
v\left(t_{s} \vee t_{U}(i)\right)-v\left(t_{s}\right) \leq w\left(t_{s} \vee t_{U}(i)\right)-w\left(t_{s}\right)
$$

and

$$
\begin{aligned}
& v\left(e^{\text {SuppS } \cup i}-\left(f_{S} \vee f_{U}(i)\right)\right)-v\left(e^{\text {SuppS }}-f_{S}\right) \\
\leq & w\left(e^{\text {SuppS } \cup i}-\left(f_{S} \vee f_{U}(i)\right)\right)-w\left(e^{\text {SuppS }}-f_{S}\right)
\end{aligned}
$$

for any $i \in \operatorname{Supp} U$ and any $S \subseteq U$ with $i \notin \operatorname{Supp} S$.
Then we have

$$
\varphi_{i}\left(t_{U}, v\right) \leq \varphi_{i}\left(t_{U}, w\right)
$$

and

$$
\varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, v\right) \leq \varphi_{i}\left(e^{\mathrm{Supp} U}-f_{U}, w\right)
$$

for any $i \in \operatorname{Supp} U$.

4 The Shapley value for a special kind of fuzzy games on vague sets

In this section, we will discuss a special kind of fuzzy games, which is named as fuzzy games with multilinear extension. The fuzzy coalition value for this class of fuzzy games is written as in [9]:

$$
\begin{equation*}
v_{O}(R)=\sum_{T_{0} \subseteq \text { Supp }}\left\{\Pi_{i \in T_{0}} R(i) \Pi_{i \in \operatorname{Supp} R T_{0}}(1-R(i))\right\} v_{0}\left(T_{0}\right), \tag{3}
\end{equation*}
$$

where R is a fuzzy coalition as usual.
Let $G_{V}^{O}(N)$ denote the set of all fuzzy games on vague sets with multilinear extension form. For any $S \in T F(N)$, we have
$v_{O}\left(t_{S}\right)=\sum_{H_{0} \subseteq \text { SuppS }}\left\{\Pi_{i \in H_{0}} t_{S}(i) \Pi_{i \in \operatorname{Supp} S \backslash H_{0}}\left(1-t_{S}(i)\right)\right\} v_{0}\left(H_{0}\right)$
and

$$
\begin{align*}
v_{O}\left(e^{\text {SuppS }}-f_{S}\right) & =\sum_{H_{0} \subseteq \operatorname{Supp}\left(e^{\text {supps }}-f_{s}\right)}\left\{\Pi_{i \in H_{0}}\left(1-f_{S}(i)\right)\right. \\
& \left.\times \Pi_{i \in \operatorname{Supp}\left(e^{\text {sups }}-f_{S}\right) \backslash H_{0}} f_{S}(i)\right\} v_{0}\left(H_{0}\right) \tag{5}
\end{align*}
$$

When we restrict the domain of $G_{V}(N)$ in the setting of $G_{V}^{O}(N)$, from definitions of VPMAF and imputation given in section 3 , we can get the definitions of VPMAF and imputation for v_{O} in U. Here, we omit them.

Definition $6 v_{0} \in G_{0}(N)$ is said to be convex if

$$
v_{0}\left(T_{0}\right)+v_{0}\left(S_{0}\right) \leq v_{0}\left(S_{0} \cup T_{0}\right)+v_{0}\left(S_{0} \cap T_{0}\right)
$$

for all $S_{0}, T_{0} \in P(N)$.
Definition 7 For $v_{O} \in G_{V}^{O}(N)$ and $U \in \operatorname{TF}(N)$, the core $C_{V}^{O}\left(U, v_{O}\right)$ for v_{O} in U is defined by

$$
\begin{aligned}
C_{V}^{O}\left(U, v_{O}\right)= & \left\{x=\left\{\left\langle x_{i}^{t}, x_{i}^{f}\right\rangle_{i \in \operatorname{Supp} U}\right\} \mid \sum_{i \in \operatorname{Supp} U} x_{i}^{t}=v_{O}\left(t_{U}\right),\right. \\
& \sum_{i \in \operatorname{Supp} U} x_{i}^{f}=v_{O}\left(e^{\mathrm{Supp} U}-f_{U}\right), \sum_{i \in \operatorname{Supp} S} x_{i}^{t} \geq v_{O}\left(t_{S}\right), \\
& \left.\sum_{i \in \operatorname{Supp} S} x_{i}^{f} \geq v_{O}\left(e^{\mathrm{Supp} S}-f_{S}\right), \forall S \subseteq U\right\}
\end{aligned}
$$

Theorem 4 Let $v_{O} \in G_{V}^{O}(N), U \in T F(N)$ and the function $\left\langle\varphi^{O}\left(t_{U}, v_{O}\right), \varphi^{O}\left(e^{\text {SuppU }}-f_{U}, v_{O}\right)\right\rangle: G_{V}^{\mathrm{O}}(N) \rightarrow$ \mathbb{R}_{+}defined by

$$
\begin{align*}
& \varphi_{i}^{O}\left(t_{U}, v_{O}\right)=\sum_{t_{K} \subseteq t_{U}, i \notin S u p p K} \beta_{U}^{K} \sum_{H_{0} \subseteq S u p p K}\left\{t_{U}(i) \Pi_{j \in H_{0}} t_{U}(j)\right. \\
& \left.\times \Pi_{j \in S u p p S \backslash H_{0}}\left(1-t_{U}(j)\right)\right\}\left(v_{0}\left(H_{0} \cup i\right)-v_{0}\left(H_{0}\right)\right) \tag{6}
\end{align*}
$$

and

$$
\begin{aligned}
& \varphi_{i}^{o}\left(e^{\text {SuppU }}-f_{U}, v_{O}\right) \\
& =\sum_{\left.\substack{f_{K} \subseteq f_{U}, i \notin \operatorname{Supp}\left(e^{S u p K} K\right.} f_{K}\right)} \beta_{e^{e^{\text {sup }} \mathrm{U}}-f_{U}}^{e_{U}^{\text {sup }}-f_{U}} \sum_{H_{0} \subseteq \operatorname{Supp}\left(e^{\text {suppK }}-f_{K}\right)}\left\{\left(1-f_{U}(i)\right)\right.
\end{aligned}
$$

$$
\left.\times \Pi_{j \in H_{0}}\left(1-f_{U}(j)\right) \Pi_{j \in \operatorname{Supp}\left(e^{\text {suppK }}-f_{K}\right) \backslash H_{0}} f_{U}(j)\right\}
$$

$$
\begin{equation*}
\times\left(v_{0}\left(H_{0} \cup i\right)-v_{0}\left(H_{0}\right)\right) \tag{7}
\end{equation*}
$$

for any $i \in \operatorname{Supp} U$, where $\beta_{U}^{K}, \beta_{e^{e^{\text {supp } U}-}-f_{U}}^{\text {Lup }_{K}}, t_{K} \subseteq t_{U}$ and $f_{K} \subseteq f_{U}$ are like in Theorem 1.
Then $\left\langle\varphi^{O}\left(t_{U}, v_{O}\right), \varphi^{O}\left(e^{\mathrm{Supp} U}-f_{U}, v_{O}\right)\right\rangle$ is the unique Shapley value for v_{O} in U.

Proof. From (4) and (5), we have

$$
\begin{aligned}
& v_{O}\left(t_{S} \vee t_{U}(i)\right)-v_{O}\left(t_{S}\right) \\
& =\sum_{H_{0} \subseteq S \operatorname{Sup} S}\left\{t_{U}(i) \Pi_{i \in H_{0}} t_{S}(i) \Pi_{i \in S u p p S \backslash H_{0}}\left(1-t_{S}(i)\right)\right\} \\
& \times\left(v_{0}\left(H_{0} \cup i\right)-v_{0}\left(H_{0}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{O}\left(e^{\text {SuppS } \cup i}-\left(f_{S} \vee t_{U}(i)\right)\right)-v_{O}\left(e^{\text {SuppS }}-f_{S}\right) \\
& =\sum_{H_{0} \subseteq \operatorname{Supp}\left(e^{\text {supps }}-f_{s}\right)}\left\{\left(1-f_{U}(i)\right) \Pi_{j \in H_{0}}\left(1-f_{U}(j)\right)\right. \\
& \left.\times \Pi_{j \in \operatorname{Supp}\left(e^{\text {supps }}-f_{s}\right) \backslash H_{0}} f_{U}(j)\right\}\left(v_{0}\left(H_{0} \cup i\right)-v_{0}\left(H_{0}\right)\right) .
\end{aligned}
$$

From Theorem 1, (6) and (7), we know the existence holds.

In the following, we shall show the uniqueness holds.

Since $v_{O} \in G_{V}^{O}(N)$, the restricted in U can be uniquely expressed by

$$
v_{O}=\left\{\begin{array}{c}
\sum_{t_{K} \subseteq t_{U}, t_{K} \neq \varnothing} \alpha_{t_{K}} u_{t_{K}} \\
\sum_{f_{K} \subseteq f_{U}, e^{\text {supp }}-f_{K} \neq \varnothing} \alpha_{e^{\text {supp }}-f_{K}} u_{e^{\text {suppK }}-f_{K}},
\end{array},\right.
$$

where

$$
\alpha_{K}=\sum_{t_{S} \subseteq t_{K}}(-1)^{\mid \text {Supp } K|-|\operatorname{SuppS}|} v_{O}\left(t_{S}\right)
$$

and

$$
\alpha_{e^{\text {supp }}-f_{K}}=\sum_{f_{S} \subseteq f_{K}}(-1)^{\left|e^{\text {supp } K}-f_{K}\right|-\left|e^{\text {supps }}-f_{s}\right|} v_{O}\left(e^{\text {SuppS }}-f_{S}\right) .
$$

$u_{t_{K}}$ and $u_{e^{\text {sup } K}-f_{K}}$ as given in Theorem 1.
Thus, we get

$$
\varphi_{i}^{o}\left(t_{U}, u_{t_{K}}\right)=\left\{\begin{array}{cc}
\frac{1}{|\operatorname{Supp} K|} & i \in \operatorname{Supp} K \\
0 & \text { otherwise }
\end{array} .\right.
$$

and

$$
\begin{aligned}
& \varphi_{i}^{O}\left(e^{\operatorname{Supp} U}-f_{U}, u_{e^{\text {suph } K}-f_{K}}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{\left|\operatorname{Supp}\left(e^{\operatorname{Sup} K}-f_{K}\right)\right|} & i \in \operatorname{Supp}\left(e^{\text {SuppK }}-f_{K}\right) . \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Theorem 5 Let $v_{O} \in G_{V}^{O}(N)$ and $U \in \operatorname{TF}(N)$. If the associated crisp game $v_{0} \in G_{0}(N)$ of v_{O} is convex, then $\left\{\left\langle\varphi_{i}^{O}\left(t_{U}, v_{O}\right), \varphi_{i}^{O}\left(e^{\operatorname{Supp} U}-f_{U}, v_{O}\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}$ is a VPMAF for v_{O} in U.

Proof. From (6) and (7), we can easily get

$$
\sum_{i \in S u p p S} \varphi_{i}^{O}\left(t_{S}, v_{O}\right)=v_{O}\left(t_{S}\right)
$$

and

$$
\sum_{i \in S u p p S} \varphi_{i}^{O}\left(e^{\text {SuppS }}-f_{S}, v_{O}\right)=v_{O}\left(e^{\text {SuppS }}-f_{S}\right)
$$

Next, we shall show the second condition holds. From the convexity of $v_{0} \in G_{0}(N)$, (4) and (5), we get $v_{O} \in G_{V}^{O}(N)$ restricted in U is convex. From Definition 1, we get

$$
v_{O}\left(t_{S} \vee t_{U}(i)\right)-v_{O}\left(t_{S}\right) \geq v_{O}\left(t_{K} \vee t_{U}(i)\right)-v_{O}\left(t_{K}\right)
$$

and

$$
\begin{aligned}
& \left.v_{O}\left(e^{\mathrm{Supp} S \cup i}-\left(f_{S} \vee f_{U}(i)\right)\right)-v_{O}\left(e^{\mathrm{Supp} S}-f_{S}\right)\right) \\
& \geq v_{O}\left(e^{\mathrm{Supp} K \cup i}-\left(f_{K} \vee f_{U}(i)\right)\right)-v_{O}\left(e^{\mathrm{Supp} K}-f_{K}\right)
\end{aligned}
$$

for any $K \subseteq S \subseteq U$, where $i \notin \operatorname{Supp} S$.
From (6), (7) and Theorem 2 , we obtain

$$
\varphi_{i}^{O}\left(t_{K}, v_{O}\right) \leq \varphi_{i}^{O}\left(t_{S}, v_{O}\right)
$$

and

$$
\varphi_{i}^{O}\left(e^{\mathrm{Supp} K}-f_{K}, v_{O}\right) \leq \varphi_{i}^{O}\left(e^{\mathrm{SuppS}}-f_{S}, v_{O}\right)
$$

for any $K \subseteq S \subseteq U$ and any $i \in \operatorname{Supp} K$.
Namely, $\left\{\left\langle\varphi_{i}^{O}\left(t_{U}, v_{O}\right), \varphi_{i}^{O}\left(e^{\text {Supp } U}-f_{U}, v_{O}\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}$ is a VPMAF for v_{O} in U.

Theorem 6 Let $v_{O} \in G_{V}^{O}(N)$ and $U \in \operatorname{TF}(N)$. If the associated crisp game $v_{0} \in G_{0}(N)$ of v_{O} is convex, then
$\left\{\left\langle\varphi_{i}^{O}\left(t_{U}, v_{O}\right), \varphi_{i}^{O}\left(e^{\mathrm{Supp} U}-f_{U}, v_{O}\right)\right\rangle_{i \in \operatorname{Supp} U}\right\} \in C_{V}^{O}\left(U, v_{O}\right)$.

Proof. The proof of Theorem 6 is similar to that of Theorem 3.

Corollary 3 Let $v_{O} \in G_{V}^{O}(N)$ and $U \in T F(N)$. If the associated crisp game $v_{0} \in G_{0}(N)$ of v_{O} is convex, then $\left\{\left\langle\varphi_{i}^{O}\left(t_{U}, v_{O}\right), \varphi_{i}^{O}\left(e^{\operatorname{Supp} U}-f_{U}, v_{O}\right)\right\rangle_{i \in \operatorname{Supp} U}\right\}$ is an imputation for v_{O} in U.

Theorem 7 Let $v_{O} \in G_{V}^{O}(N)$ and $U \in T F(N)$. If the associated crisp game $v_{0} \in G_{0}(N)$ of v_{O} is convex, then the core $C_{V}^{O}\left(U, v_{O}\right) \neq \varnothing$ and it can be expressed by

$$
\begin{aligned}
& C_{V}^{O}\left(U, v_{O}\right)=\left\{x=\left\{\left\langle x_{i}^{t}, x_{i}^{f}\right\rangle_{i \in \operatorname{Supp} U}\right\} \mid \sum_{i \in \operatorname{Supp} U} x_{i}^{t}=\right. \\
& \quad \sum_{H_{0} \subseteq \operatorname{Supp} U}\left\{\Pi_{i \in H_{0}} t_{U}(i) \Pi_{i \in \operatorname{Supp} U \backslash H_{0}}\left(1-t_{U}(i)\right)\right\} y^{H_{0}}, \\
& \quad \sum_{i \in \operatorname{Supp} U} x_{i}^{f}=\sum_{R_{0} \subseteq \operatorname{Supp}\left(e^{\text {supp }}-f_{U}\right)}\left\{\Pi_{i \in R_{0}}\left(1-f_{U}(i)\right)\right. \\
& \left.\quad \Pi_{i \in \operatorname{Supp}\left(e^{\text {Supp }}-f_{U}\right) \backslash R_{0}} f_{U}(i)\right\} y^{R_{0}}, \forall H_{0} \subseteq \operatorname{Supp} U, \\
& \forall y^{T_{0}} \in C\left(H_{0}, v_{0}\right), \forall R_{0} \subseteq \operatorname{Supp}\left(e^{\operatorname{Supp} U}-f_{U}\right), \\
& \left.\forall y^{R_{0}} \in C\left(R_{0}, v_{0}\right)\right\},
\end{aligned}
$$

where $C\left(H_{0}, v_{0}\right)$ denotes the core in H_{0} for v_{0} and $C\left(R_{0}, v_{0}\right)$ denotes the core in R_{0} for v_{0}.

Proof. The proof of Theorem 7 is similar to that of Proposition 4.1 given in [15].

Since the fuzzy games in $G_{V}^{O}(N)$ establish the specific relationship between the fuzzy coalition values and that of their associated crisp coalitions. The properties for this class of fuzzy games can be obtained by researching their associated crisp games.

5 Numerical example

There are three companies, named 1, 2 and 3, that decide to cooperate with their resources. They can combine freely. For example $S_{0}=\{1,2\}$ denotes the
cooperation between company 1 and 2 . Since there are many uncertainty factors during the cooperation, each player is not willing to offer all its resources to this specific cooperation. In another word, they only supply part of their resources. In order to reduce risk and get more payoffs, when the players take part in this cooperation, they only know the determining participation levels and the participation levels that they do not participate. For example, the company 1 has 10000 units of resources, the determining participation level is 3000 units, and 2000 units are not devoted to cooperation. Namely, the true membership grade of the player 1 is $0.3=3000 /$ 10000, and the false membership grade of the player 1 is $0.2=2000 / 10000$. In such a way, a vague set is interpreted. Consider a vague coalition U defined by

$$
\begin{aligned}
U & =\sum_{i \in(1,2,3]}\left[t_{U}(i), 1-f_{U}(i)\right] / i \\
& =[0.3,0.6] / 1+[0.2,0.3] / 2+[0.6,0.8] / 3 .
\end{aligned}
$$

If the crisp coalition values are given by table 1
Table 1. The fuzzy payoffs of the crisp

coalitions (millions of dollars)			
S_{0}	$v_{0}\left(S_{0}\right)$	S_{0}	$v_{0}\left(S_{0}\right)$
$\{1\}$	1	$\{1,3\}$	3
$\{2\}$	2	$\{2,3\}$	5
$\{3\}$	1	$\{1,2,3\}$	10
$\{1,2\}$	6		

From table 1, we know that when the company 1 and 2 cooperate with all their resources, then their payoff is 6 millions of dollars.

When the relationship between the values of the fuzzy coalitions and that of their associated crisp coalitions as given in (4) and (5). Namely, this fuzzy game belongs to $G_{V}^{O}(N)$. From (6), we get the player true Shapley values are

$$
\begin{aligned}
& \varphi_{1}^{o}\left(t_{U}, v_{O}\right)=0.42, \varphi_{2}^{o}\left(t_{U}, v_{O}\right)=0.64, \\
& \varphi_{3}^{o}\left(t_{U}, v_{O}\right)=0.84 .
\end{aligned}
$$

From (7), we get the player upper Shapley values are

$$
\begin{aligned}
& \varphi_{1}^{o}\left(e^{\mathrm{SupU}}-f_{U}, v_{O}\right)=\varphi_{2}^{o}\left(e^{\mathrm{SupU} U}-f_{U}, v_{O}\right)=1.11 \\
& \varphi_{3}^{o}\left(e^{\mathrm{Sup} U}-f_{U}, v_{O}\right)=1.28 .
\end{aligned}
$$

Since the associated crisp game is convex, we know that the player Shapley values is a VMPAF and an element in its core.

Furthermore, the player possible payoffs with respect to the Shapley function are [0.42, 1.11], [0.64, 1.11] and [0.84, 1.28].

6 Conclusion

In some cooperative games, the players only know the determination participation levels and the levels that they do not participate. The fuzzy games on vague sets can well solve this situation. For this purpose, we research the fuzzy games on vague sets and discuss the Shapley value for fuzzy games on vague sets. When the given fuzzy games on vague sets are convex, some properties are investigated. Furthermore, we study a special kind of fuzzy games on vague sets. The Shapley value and the core for this kind of fuzzy games are studied.

However, we only study the Shapley value for fuzzy games on vague sets and it will be interesting to study other payoff indices.

7 Acknowledgment

The authors gratefully thank the Chief Editor Prof. Panos Kostarakis and anonymous referees for their valuable comments, which have much improved the paper. This work was supported by the National Natural Science Foundation of China (Nos 70771010, 70801064 and 71071018).

References:

[1] Aubin, J.P., Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam, 1982.
[2] Butnariu, D., Stability and Shapley value for an n-persons fuzzy game. Fuzzy Sets and Systems, Vol.4, No.1, 1980, pp. 63-72.
[3] Butnariu, D., and Kroupa, T., Shapley mappings and the cumulative value for n person games with fuzzy coalitions. European Journal of Operational Research, Vol.186, No.1, 2008, pp. 288-299.
[4] Borkotokey, S., Cooperative games with fuzzy coalitions and fuzzy characteristic functions. Fuzzy Sets and Systems, Vol.159, No.2, 2008, pp.138-151.
[5] Gau, W.L. and Buehrer, D.J., Vague sets. IEEE Transactions on Systems, Man and Cybernetics, Vol.23, No.2, 1993, pp. 610-614.
[6] Li, S.J. and Zhang, Q., A simplified expression of the Shapley function for fuzzy game. European Journal of Operational Research, Vol.196, No.1, 2009, pp. 234-245.
[7] Meng, F.Y. and Zhang, Q., The Shapley function for fuzzy cooperative games with multilinear extension form. Applied Mathematics Letters, Vol.23, No.5, 2010, pp. 644-650.
[8] Meng, F.Y. and Zhang, Q., The Shapley value on a kind of cooperative fuzzy games. Journal of Computational Information Systems, Vol.7, No.6, 2011, pp.1846-1854.
[9] Owen, G., Multilinear extensions of games. Management Sciences, Vol.18, No.2, 1972, pp. 64-79.
[10] Sakawa, M., and Nishizalzi, I., A lexicographical solution concept in an n-person cooperative fuzzy game. Fuzzy Sets and Systems, Vol.61, No.3, 1994, pp.265-275.
[11] Sprumont, Y., Population monotonic allocation schemes for cooperative games with transferable utility. Games and Economic Behavior, Vol.2, No.4, 1990, pp.378-394.
[12] Tsurumi, M., Tanino, T. and Inuiguchi, M., A Shapley function on a class of cooperative fuzzy games. European Journal of Operational Research, Vol.129, No.3, 2001, pp. 596-618.
[13] Tijs, S., Branzei, R., Ishihara, S. and Muto, S., On cores and stable sets for fuzzy games. Fuzzy Sets and Systems, Vol.146, No.2, 2004, pp. 285-296.
[14] Yu, X.H. and Zhang, Q., The fuzzy core in games with fuzzy coalitions. Journal of Computational and Applied Mathematics, Vol. 230, No.1, 2009, pp.173-186.
[15] Yu, X.H. and Zhang, Q., An extension of cooperative fuzzy games. Fuzzy Sets and Systems, Vol.161, No.11, 2010, pp.1614-1634.

